(1R,2S,3S,5R)-3-[(1R)-1-Methyl-3-oxobutyl]-3,6,6-trimethylbicyclo[3.1.1]hept-2-yl 2-Methylbutyrate (16). Into a solution of 15a (131 mg, 0.45 mmol) in CH₂Cl₂ (10 mL) and MeOH (4 mL) was passed excess ozone at -78 °C for 1 h. After the excess ozone was removed by bubbling through with nitrogen gas for 30 min, dimethyl sulfide (280 mg, 4.5 mmol) was added. The mixture was stirred at -70 °C for 1 h and at room temperature for 12 h and concentrated. The residue was chromatographed $(SiO_2; hexane-AcOEt, 7:1)$ to give 109 mg (75%) of 16 ($R_f 0.51$, Merck F 254; hexane-AcOEt, 5:1) and 31 mg of unidentified compound (R_f 0.34). 16: bp 82-83 °C (0.02 mm); $[\alpha]^{26}_{D}$ +34.0° (c 1.5); IR (neat) 1720 (ester C=0), 1705 cm⁻¹ (C=0); ¹H NMR (60 MHz) δ 0.82 (t, 3, CH₃), 0.87 (d, J = 6 Hz, 3, CH₃), 1.03 (s, 3, CH₃), 1.06 (d, J = 6 Hz, 3, CH₃), 1.18 (s, 6, CH₃), 1.20-3.00 (m, 12, CH_2 , CH), 2.06 (s, 3, $COCH_3$), 3.14 (d, J = 4 Hz, 1, CH-O). Anal. Calcd for C₂₀H₃₄O₃: C, 74.49; H, 10.63. Found: C, 74.22; H, 10.68

(1R.2S.3S.5R)-3-[(1R)-3-Hydroxy-1-methylbutyl]-3.6.6trimethylbicyclo[3.1.1]heptan-2-ol (17a). To a suspension of LiAlH₄ (76 mg, 2.0 mmol) in ether (2 mL) was added a mixture of 16 (109 mg, 0.34 mmol) and 31 mg of unidentified compound obtained above in ether (5 mL) at 0 °C. The mixture was stirred at 2-5 °C for 1 h and at room temperature for 2 h, quenched with AcOEt (0.5 mL) and aqueous 5% NaHCO₃, and worked up in the usual manner to give 82 mg (76% yield from 15a) of 17a: mp 96–97 °C; [α]¹⁹_D +27.0° (c 1.1); IR (Nujol) 3350 (OH), 3280 (OH), 1458, 1136, 1031 cm⁻¹; ¹H NMR (60 MHz) δ 0.94 (d, J = 7 Hz, 3, CH₃), 1.04, 1.11 (s, 6, CH₃), 1.17 (d, J = 7 Hz, 3, CH₃), 1.21 (s, 3, CH₃), 1.20–2.40 (m, 9, CH₂, CH), 2.87 (br s, 2, OH), 3.66–3.98 (m, 1, CH-O), 4.08 (d, J = 4 Hz, 1, CH-O). Anal. Calcd for C₁₅H₂₈O₂: C, 74.95; H, 11.74. Found: C, 74.75; H, 11.55.

(1R,3S,5R)-3-[(1R)-1-Methyl-3-oxobutyl]-3,6,6-trimethylbicyclo[3.1.1]heptan-2-one (17b). To a suspension of PCC (410 mg, 1.9 mmol) and AcONa (312 mg, 3.5 mmol) in CH₂Cl₂ (7 mL) was added a solution of 17a (65 mg, 0.27 mmol) in CH₂Cl₂ (3 mL) at 0-5 °C. After being stirred at 0-5 °C for 1 h and at room temperature for 3 h, the mixture was worked up as described in the preparation of 11a to give 62 mg (97%) of 17b: bp 74-75 °C (0.025 mm) [lit.⁶ mp 100 °C (0.1 mm)]; $[\alpha]^{15}_{D}$ +94.0° (c 0.5) (lit.⁶ +120°); ¹³C NMR δ 16.4 (q), 22.7 (q), 24.9 (q), 25.9 (t), 26.4 (q), 30.4 (q), 35.3 (d), 37.0 (t), 41.8 (d), 42.8 (s), 44.8 (s), 47.4 (t), 59.6 (d), 208.3 (s), 219.9 (s). IR and ¹H NMR spectral data were identical with those of an authentic specimen.¹⁷

(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-6-(1-chloro-1methylethyl)-4,4a-dimethyl-2(3H)-naphthalenone (Nootkatone Hydrochloride, 18). The diketone 17b was converted to 18 by the literature method⁶ in 77% yield: mp 84-85 °C (lit.⁶ mp 84–85.5 °C); $[\alpha]^{16}_{D}$ +159.5° (c 0.43) (lit. +146°, ^{5b} +160° ⁶); ¹³C NMR δ 15.0 (q), 16.9 (q), 28.1 (t), 30.1 (q), 30.5 (q), 32.6 (t), 39.1 (s), 40.0 (t), 40.4 (d), 42.0 (t), 45.3 (d), 73.7 (s), 124.5 (s), 170.0 (d), 199.0 (s).

(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-6-isopropenyl-4,4adimethyl-2(3H)-naphthalenone ((+)-Nootkatone, 1). The treatment of 18 with activated alumina in hexane at 60 °C for 24 h afforded a mixture of (+)-1 and isonootkatone (91:1) in 76% yield by HPLC analysis (Waters Associates Model 6000A; μ -Porasil. 7.8×30 cm column: 10:1 hexane-AcOEt at 1.5 mL/min at room temperature): mp 29-30 °C (lit. mp 36-37, ^{1a} 28-30 °C^{4b}); $[\alpha]^{15}_{D} + 184^{\circ} (c \ 0.94) (lit. + 195.5^{\circ}, ^{1a} + 188^{\circ} \, ^{6}).$ IR, ¹H NMR, ¹³C $NM\bar{R}^{20}$ spectral data were identical with those of the authentic sample of $(+)-1.^{21}$

Registry No. 1, 4674-50-4; 2a, 38651-65-9; 2b, 83198-84-9; 2c, 29362-79-6; 3, 73675-69-1; 4, 83198-85-0; 5, 83152-42-5; 6a, 81550-51-8; 6b, 83152-43-6; 7a, 81550-52-9; 7b, 81550-53-0; 7c, 83152-44-7; 8a, 81550-54-1; 8b, 83152-45-8; 9, 81550-55-2; 10a, 81550-56-3; 10b, 81550-57-4; 10c, 83152-46-9; 11a, 81550-58-5; 11b, 83152-47-0; 11c, 72521-65-4; 12, 27621-99-4; 13, 83152-48-1; 14, 83152-49-2; 15, 83152-50-5; 16, 83152-51-6; 17a, 81550-62-1; 17b, 72453-41-9; 18, 72453-44-2; dimethyl carbonate, 616-38-6.

(20) Lukacs, G.; Neszmelyi, A. Tetrahedron Lett. 1981, 22, 5053. (21) We are indebted to Mr. M. Ishihara, Shiono Koryo Co. Ltd., for a generous gift of natural nootkatone (1).

Regio- and Stereocontrolled Synthesis of Epoxy Alcohols and Triols from Allylic and Homoallylic Alcohols via Iodo Carbonates

Alessandro Bongini, Giuliana Cardillo,* Mario Orena, Gianni Porzi, and Sergio Sandri

Istituto Chimico "G. Ciamician", Università di Bologna, 40126 Bologna, Italy

Received March 16, 1982

The regio- and stereoselective synthesis of cyclic iodo carbonates 1-10, resulting from allylic and homoallylic alcohols, was investigated. These useful intermediates were easily hydrolyzed to epoxy alcohols 11-20 or triols 21-30, depending on the polymeric reagent employed (Amberlyst A 26 in the OH^- or CO_3^{2-} form, respectively). Stereochemical assignments were carried out by ¹³C NMR or ¹H NMR correlations and by conversion of the compounds to products of known stereostructures.

In connection with the total synthesis of macrolide antibiotics and polyether ionophores, there is increasing interest in methods for stereocontrolled double bond functionalization.¹ Recently Bartlett² achieved 1,3-asymmetric induction through the phosphate chain-extended epoxidation, Kishi³ reported 1,4-asymmetric induction in the preparation of bis-homoallylic epoxy alcohols, and Still⁴ showed that boranes may be used to hydroborate dienes to give diols with high 1,2, 1,3, and 1,4 remote asymmetric induction.

In recent papers we have described a novel functionalization of double bonds of allylic and homoallylic alcohols.5-7

We report here further developments of our process. concerning the regio- and stereoselective synthesis of epoxy

^{(1) (}a) Nicolaou, K. C. Tetrahedron 1977, 33, 683. (b) ApSimon, J. W., Seguin, R. P. Ibid. 1979, 35, 2797.

^{(2) (}a) Bartlett, P. A.; Jernstedt, K. K. J. Am. Chem. Soc. 1977, 99, 4829. (b) Bartlett, P. A. Tetrahedron 1980, 36, 3.

⁽³⁾ Fukuyama, T.; Vranesic, B.; Negri, D. P.; Kishi, Y. Tetrahedron Lett. 1978, 2741. (4) Still, W. C.; Darst, K. P. J. Am. Chem. Soc. 1980, 102, 7385.

⁽⁵⁾ Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Chem. Soc., Chem. Commun. 1981, 465.

⁽⁶⁾ Some of these reults were presented: Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. "Abstract of Papers", 2th European Symposium on Organic Chemistry, Stresa, Italy, June 1-5, 1981; p 73.

⁽⁷⁾ Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Synthesis 1981, 793.

^a R, R', and R" = H or alkyl. ^b (a) *n*-BuLi; (b) CO₂; (c) I₂, THF; (d) Amberlyst A 26 OH⁻ form, methanol, room temperature; (e) Amberlyst A 26 $CO_3^{2^-}$ form, refluxing benzene.

alcohols and triols starting from the corresponding cyclic iodo carbonates, obtained through a 1,2- and 1,3-asymmetric induction in both cyclic and acyclic systems. Fiveand six-membered cyclic iodo carbonates of allylic and homoallylic alcohols are respectively obtained by treatment of lithium alkoxides with carbon dioxide, followed by iodocyclization.⁵ The successive hydrolyses^{6,7} afford either epoxy alcohols or triols, depending upon the reaction conditions. The steps of this synthesis are outlined in Scheme I.

Results and Discussion

(A) Iodo Carbonates. The iodolactonization reaction is a versatile and highly stereoselective process, as demonstrated by Bartlett⁸ and Corey.⁹ As part of our studies in the synthesis of natural compounds by means of cyclofunctionalization reactions proceeding via an intermediate iodonium,¹⁰ we carried out the iodocyclization of lithium alkenyl carbonates,⁵ prepared in quantitative yield by bubbling CO₂ into a THF solution of lithium alkoxides at room temperature for 1 h. These carbonates can be isolated by performing the reaction in dry ether and were characterized by IR spectroscopy ($\nu_{C=0}$ 1750–1805 cm⁻¹). The iodocyclization reaction was carried out in homogeneous THF solution at room temperature by adding 2.2 equiv¹¹ of I₂ dissolved in THF to the carbonate. The cyclic iodo carbonates were obtained in good yield. The reaction seems to have a wide applicability toward either allylic or homoallylic primary, secondary, and tertiary alcohols: the results are summarized in Table I.

This useful procedure functionalizes C=C double bonds with total regioselection: allylic alcohols give five-membered rings and homoallylic alcohols give six-membered rings, exclusively. Moreover, the reaction shows high stereoselection with the iodo carbonates 2, 5, 6, 9, and 10, obtained from 2(E)-octen-4-ol, 2-cyclohexen-1-ol, 3,7-dimethyl-1,6-octadien-3-ol (linalool), 4-penten-2-ol, and 4methyl-4-penten-2-ol, respectively, while lower selectivity is observed in the cases of 1-hexen-3-ol and 2-methyl-1hepten-3-ol (iodo carbonates 1 and 3). The diastereomeric ratios were determined by VPC analysis (see Experimental Section). The stereostructures of cyclic iodo carbonates 1-3 were established by conversion into the corresponding epoxy alcohols (see section B), whose configuration was assigned by comparison with authentic samples (prepared according to the literature^{12,13}) and confirmed by ¹H NMR analysis.

The diastereomeric ratios of the epoxy alcohols recovered after hydrolysis always corresponded to the ratio of the iodo carbonate starting material.

The diastereomeric ratio of the iodo carbonate 1 was determined by ¹H NMR spectroscopy. The pure diastereomers isolated by silica gel chromatography were selectively irradiated at the iodomethyl and methylene groups, and the resonances for the C-3 and C-4 protons were used to determine the ratio of the cis/trans isomer (40:60) by assigning the lower field resonances to the cis configuration.¹⁴

For the iodo carbonate 2, having a diastereomeric ratio of 7:93, the trans stereostructure of the major isomer was established by conversion to the corresponding epoxy alcohol; the assignment was confirmed by the ¹H NMR chemical shifts of the C-3 and C-4 protons of the ring, which were in agreement with a trans configuration.¹⁴

The cyclic iodo carbonates 1 and 3 were also obtained by treatment of the corresponding alkenyl methyl carbonates with I_2 in acetonitrile⁸ either at room temperature or under reflux. Although an increase of the trans isomer was observed, under these conditions the reaction occurred at a much slower rate and with lower yields. In fact, the ester 31 furnished 1 in 60% yield, the cis/trans ratio being 20:80, while the ester 32 gave 3 in 40% yield, the cis/trans ratio being 52:48.

The stereostructrures for iodo caronbates 5, 6, 9, and 10 were assigned by 1 H NMR spectroscopy.

⁽⁸⁾ Bartlett, P. A.; Myerson, J. J. Am. Chem. Soc. 1978, 100, 3950.
(9) Corey, E. J.; Hase, T. Tetrahedron Lett. 1979, 335.

 ^{(10) (}a) Cardillo, G.; Shimizu, M. J. Org. Chem. 1977, 42, 4268. (b)
 Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Tetrahedron
 Lett. 1979, 2545. (c) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Org.
 Chem. 1981, 46, 2439.

⁽¹¹⁾ do Amaral, L.; Melo, S. C. J. Org. Chem. 1973, 38, 800.

⁽¹²⁾ Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B. Tetrahedron Lett. 1979, 4733.

⁽¹³⁾ Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159.

⁽¹⁴⁾ Chuche, J.; Dana, G.; Monot, M. R. Bull. Soc. Chim. Fr. 1967, 3300.

The stereostructure of the iodo carbonate 5 (99:1 dia-

stereomeric ratio) was determined by ¹H NMR (100 MHz) and confirmed by suitable reactions. The diagnostic feature is the H_X resonance which appears as a multiplet (eight lines) with J = 10.0, 7.0, and 4.0 Hz. After irradiation at the methylene protons H_Y and H_Z , this resonance appeared as a rough doublet with J = 10.0 Hz, in full agreement with an axial-axial coupling constant between H_X and H_B . The remaining coupling constants are thus assigned as the axial-axial and the axial-equatorial coupling constants of H_X with methylene protons.

Moreover, alkaline hydrolysis of the cyclic carbonate resulting from reaction of iodo carbonate 5 with tri-n-butyl tin hydride affords cis-cyclohexane-1,2-diol.¹⁵

The diastereomeric ratio for iodo carbonate 6 was 80:20; the relative stereochemistry of the two isomers was elucidated on the basis of the ¹H NMR spectrum. The tertiary methyl resonance occurs at 1.40 ppm for the minor component and at 1.43 ppm for the major one. Since the isomer with the methyl group cis to a bulky substituent in five-membered cyclic carbonates has an upfield absorption, we attribute the cis configuration to the major component and the trans configuration to the minor one.¹⁶

A high stereoselection was also observed in the iodocyclization of the carbonate resulting from 4-methyl-4penten-2-ol. The diastereomeric ratio for iodo carbonate 10 was 94:6. In the ¹H NMR spectrum of the major com-

ponent we observed the resonances for the secondary methyl at 4.43 ppm, for the tertiary methyl at 1.64 ppm, and for the iodomethyl at 3.40 ppm, while the spectrum of the minor component showed the resonances for the same groups at 1.42, 1.60, and 3.44 ppm. Since the axial methyl resonance is generally observed at lower field than

the equatorial one in six-membered rings,¹⁷ we accordingly assign the cis configuration to the major component and the trans configuration to the minor one. Moreover, this assignment agrees with our previous results for the similar iodo carbonate 9.5

(B) Epoxy Alcohols. Cyclic iodo carbonates were converted into the corresponding epoxy alcohols by treatment with a resin (Amberlyst A 26, OH^{-} form¹⁸). The reaction was performed in methanol at room temperature and was complete after 2 h. The resin was then filtered off, and the product, after evaporation of the methanol, was practically pure (see Table I). The hydrolysis proceeds with retention of the stereostructure present in the starting iodo carbonate. In fact, cis-1 and trans-1 iodo carbonates, isolated by silica gel chromatography, afforded exclusively the epoxy alcohols erythro-11 and threo-11, respectively. The stereostructures and the diastereomeric ratio for these products were determined by a VPC comparison with a mixture prepared by epoxidation of 1-hexen-3-ol with t-BuOOH/VO(acac)2.¹² Analogously, the cis-3 and trans-3 iodo carbonates gave the erythro-13 and threo-13 epoxy alcohols, respectively.

The same diastereomeric ratio of the iodo carbonate 2 was observed for the corresponding epoxy alcohol 12 (7:93) erythro/threo).

The assigned stereochemistry of epoxy alcohols 15 and 19 was confirmed by comparison of their ¹³C NMR spectra with that of a known mixture obtained by epoxidation of the corresponding alcohols with $MCPBA^{13}$ or t-BuOOH/VO(acac)₂,¹² respectively.

Only 40% yield was observed in the conversion of iodo carbonate 6 into the epoxy alcohol 16, and the diastereomeric ratio of the starting iodo carbonate remains unchanged in the reaction product. The main component of the reaction mixture was 3,7-dimethyl-3-hydroxy-6-octen-2-one.

(C) Triols. Both iodo carbonates and epoxy alcohols were easily hydrolyzed to the corresponding triols in good yield by treatment with carbonate ion supported on Amberlyst A 26, an anion-exchange resin.⁷ The reaction was carried out in refluxing benzene and was complete after 6 h. The results are summarized in Table II, where the yields of triols are referred to the hydrolysis of epoxy alcohol. The direct conversion of iodo carbonates to triols also occurred in good yield, except for 6. The diastereomeric ratios of triols were determined by VPC analysis.

The reaction proceeded through the corresponding intermediate epoxy alcohol, as shown by TLC analysis. When both the iodo carbonate and epoxy alcohol disappeared, the resin was filtered off, and the triol, which remained adsorbed on the Amberlyst A 26, was recovered by washing with methanol. This procedure avoids difficulties connected with an aqueous workup, due to the high solubility of the products in water.

The hydrolysis proceeded with a total retention at chiral centers present in the starting material. An exception to this generalization is the iodo carbonate 2, which gave a 60:20:20 diastereomeric mixture with unassigned stereostructure.

The pure isolated epoxy alcohols erythro-11 and threo-11 afforded erythro-21 and threo-21 triols, respectively, and their stereostructures were determined by comparison with authentic samples of diastereomers,

^{(15) &}quot;The Aldrich Library of NMR Spectra"; Aldrich Chemical Co.: Milwaukee, WI, 1974.

⁽¹⁶⁾ Anet, F. A. L. J. Am. Chem. Soc. 1962, 84, 747.

^{(17) (}a) Segre, A.; Musher, J. I. J. Am. Chem. Soc. 1967, 89, 706. (b) Johnson, F.; Starkowsky, N. A; Gurowitz, W. D. Ibid. 1965, 87, 3492. (c) Maroni, P.; Gorrichon, J. P. Bull. Soc. Chim. Fr. 1972, 785. (d) Cazaux, L.; Maroni, P. Bull. Soc. Chim. Fr. 1972, 773. (18) Reed, L. A., III; Risbood, P. A.; Goodman, L. J. Chem. Soc., Chem. Commun. 1981, 760.

Chem. Commun. 1981, 760.

alcohol	Epoxidation of Allylic a iodo carbonate (major isomer)	total yield, ^a %	product distribution (cis/trans) ^b	epoxy alcohol (major isomer)	total yield, ^a %	product distribution (erythro/ threo) ^b
сзн,	I C3H7	83 70 <i>°</i>	40:60 20:80		88	40:60
C ₄ H ₉		85	7:93	Сн ₃	91	7:93
e ^H a ^D	r → → → → → C _a H ₉ → → C _a H ₉ → → → → → → → → → → → → →	81 60 <i>°</i>	60:40 52:48	$\overset{CH_3}{\underset{OH}{\overset{H}}}\overset{H}{\underset{OH}{\overset{C_{d}H_9}{\overset{H}}}}$	85	60:40
Л		85		مجمع المعالم 14	85	
C OH		67	99:1	15	90	99:1
JH OH		90	80:20		40	80:20
Щот		82		مجرمی 17	92	
ОН		80		остория 18	90	
ОН		80	95:5		90	95:5
ОН		90	94:6	^{он} зурание он 20	91	94:6

^a Isolated yields of chromatographed products. ^b Determined by VPC (see Experimental Section). ^c Iodocyclization performed on alkenyl methyl carbonate.

prepared from (E)- and (Z)-2-hexen-1-ol by treatment with t-BuOOH/OsO₄.¹⁹ The stereostructures of triols *eryth*ro-23 and threo-23 were determined in the same manner.

The ¹H NMR spectrum of the triol 25, obtained from epoxy alcohol 15 in a diastereomeric ratio of 99:1, was used

to assign the stereostructure: the resonances observed were in complete agreement with those reported in the literature²⁰ for the DL (1,2/3) diastereomer, and the assignment was further confirmed by the melting point.²⁰

(20) McCasland, G. E.; Naumann, M. O.; Durham, L. J. J. Org. Chem. 1966, 31, 3079.

⁽¹⁹⁾ Sharpless, K. B.; Akashi, K. J. Am. Chem. Soc. 1976, 98, 1986.

4630 J. Org. Chem., Vol. 47, No. 24, 1982

Table II.	Hydrolysis of	Epoxy	Alcohols	by means	of
C	arbonate Ion o	on Polyı	meric Sup	port	

epoxy alcohol	triol (major isomer)	total yield, ^a %	product distribution (erythro/threo) ^b
11		80	40:60
12		85	с
13		78	60:40
14	23 +0	80	
15	24	85	99:1
16		90	80:20
17	26 чо	84	
18	27 HD HD HD	83	
19		81	95:5
20		84	94:6
	30		

^a Isolated yield of chromatographed products. ^b Determined by VPC (see Experimental Section). ^c A mixture of three diastereomers, in a relative ratio of 60:20:20, is obtained.

The stereostructure of the major component of the triol 29, obtained from epoxy alcohol 19, was determined by conversion into *erythro*-2,4-pentanediol, identified by its ¹H NMR spectrum and by comparison with an authentic sample.²¹

Triols 26 and 30 were obtained from epoxy alcohols 16 and 20, respectively, and the diastereomeric ratio was the same as that observed in the starting epoxy alcohol. Since it seemed reasonable to assume that hydrolysis occurs with stereostructure retention, it was possible to assign the erythro configuration to the major isomer.

Conclusions

The results presented here constitute an interesting approach to the regio- and stereocontrolled functionalization of the C—C double bond. In fact, we observed that the six-membered-ring iodo carbonate formation, in the

cyclization of carbonates obtained from homoallylic alcohols, occurs with high stereoselection. This behavior is in qualitative agreement with the 1,3-interaction, present in the cyclic iodo carbonate, which forces both substituents into the equatorial positions, giving almost exclusively the cis isomer.

The cyclization of carbonates obtained from allylic alcohols always led to a five-membered ring which generally directed the bulky vicinal substituents in the trans position. In fact, with an allylic alcohol having an internal C=C double bond, high sterelselection was obtained in the corresponding iodo carbonate 2, since the CH₃CHI group is bulky and favors a trans relationship. On the contrary, a cis/trans mixture of iodo carbonates was obtained in the functionalization of a terminal double bond. The lower stereoselection resulting for the iodo carbonate 1 could be due to the smaller CH₂I group (with respect to the CH₃CHI present in 2). In the case of iodo carbonate 3 the comparable size of the CH₃ and CH₂I substituents is probably unable to induce the preferential formation of one isomer.

The present study also provides a simple method for preparing epoxy alcohols and triols. The hydrolysis of cyclic iodo carbonates generally occurs in good yields, giving products with defined configuration. In fact, from the cis iodo carbonates were obtained erythro epoxy alcohols and triols, while from trans iodo carbonates only three epoxy alcohols and triols were recovered.

Experimental Section

The starting materials were obtained from commercial suppliers and were used without purification. Tetrahydrofuran (THF) was distilled from LiAlH₄ or sodium/benzophenone immediately prior to use. All reactions involving organometallic reagents were conducted under an argon atmosphere. Melting points (Pyrex capillary) are uncorrected. IR spectra were determined with a Perkin-Elmer Model 710B infrared recording spectrophotometer. ¹H NMR spectra were determined on the following spectrometers: Perkin-Elmer R-12-B (60 MHz) and Varian XL-100 (100 MHz). ¹³C NMR spectra were measured at 25.14 MHz with a Varian XL-100 spectrometer. ¹H NMR chemical shifts are expressed in parts per million downfield from internal tetramethylsilane or sodium 2,2-dimethyl-2-silapentane-5-sulfonate. Mass spectra were obtained with a double-focusing Varian MAT 112 at an ionizing voltage of 70 eV. Mass spectral data are tabulated as m/e values. Analytical vapor-phase chromatography (VPC) was carried out on a Carlo Erba capillary gas chromatograph (Fractovap 4160) equipped with a SE-52 flexible glass capillary column $(25 \text{ m} \times 0.3 \text{ mm i.d.}; \text{ carrier gas He}, p_{\text{He}} = 0.6 \text{ kg/cm}^2)$. Chromatograms, peak areas, and retention times were obtained by using a Perkin-Elmer Sigma 10 data processor. Thin-layer chromatography was performed on silica gel HF_{254} (Merck) and column chromatography on silica gel (Merck, 0.05-0.20 mesh). n-Butyllithium was purchased from Fluka as a 1.8 M solution in n-hexane.

General Procedure for Preparation of Iodo Carbonates 1-10. To a solution of allylic or homoallylic alcohol (30 mmol) in dry THF (50 mL) under argon at room temperature was added *n*-BuLi (19.0 mL of a 1.8 M solution in *n*-hexane), and the mixture was stirred for 1 h at room temperature. CO_2 was then bubbled into the solution at 0 °C and the mixture allowed to stand at room temperature for 1 h under a CO_2 stream. To the carbonate so obtained was added I₂ (16.7 g, 66 mmol) dissolved in THF (70 mL), and the mixture was stirred for 12 h. Ethyl acetate (100 mL) was then added and the organic phase washed with $Na_2S_2O_3$ solution until the iodine color disappeared. After extraction and drying (Na_2SO_4), the solvent was evaporated in vacuo and the residue chromatographed on a silica gel column. The iodo carbonates 1-10 were separated by elution with cyclohexane/ethyl acetate (80:20). The results are summarized in Table I.

3-(Iodomethyl)-4-*n*-propyl-2,5-dioxacyclopentanone (1): colorless oil; IR (film) 1800 (ν_{C-0}) cm⁻¹ VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a cis/trans ratio of 40:60;

⁽²¹⁾ Cazaux, L.; Maroni, P. Bull. Soc. Chim. Fr. 1972, 780.

cis isomer $t_{\rm R} = 11.86$; ¹H NMR (CDCl₃) δ 1 (t, 3 H, CH₃), 1.25–2 (m, 4 H, CH₂), 3.4 (d, 2 H, CH₂I, J = 5 Hz), 4.6–5.3 (m, 2 H, CH–O). Trans isomer: $t_{\rm R} = 11.28$; ¹H NMR (CDCl₃) δ 1 (t, 3 H, CH₃), 1.25–2 (m, 4 H, CH₂), 3.45 (d, 2 H, CH₂I; J = 5 Hz), 4.2–4.65 (m, 2 H, CH–O); MS, m/e 270 (M⁺), 156, 142, 128, 82.

Anal. Calcd for $C_7H_{11}O_3I$: C, 31.11; H, 4.10. Found: C, 31.01; H, 4.04.

3-(1-Iodoethyl)-4-n-butyl-2,5-dioxacyclopentanone (2): colorless oil; IR (film) 1800 ($\nu_{C=0}$) cm⁻¹; VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a cis/trans ratio of 7:93; cis isomer $t_{\rm R}$ = 12.05, trans isomer $t_{\rm R}$ = 11.84; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.1–1.65 (m, 6 H, CH₂), 2 (d, 3 H, CH₃; J = 7 Hz), 3.95–4.65 (complex pattern, 3 H, CHI, 2 CH–O); MS, m/e298 (M⁺), 170, 156, 142, 128, 110, 70.

Anal. Calcd for $C_9H_{15}O_3I$: C, 36.24; H, 5.07. Found: C, 36.15; H, 5.01.

3-(Iodomethyl)-3-methyl-4-*n***-butyl-2,5-dioxacyclopentanone (3):** colorless oil; IR (film) 1800 ($\nu_{C=0}$) cm⁻¹; VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave cis/trans ratio of 60:40; cis isomer $t_{\rm R} = 12.58$; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.15–2 (m, 6 H, CH₂), 1.65 (s, 3 H, CH₃), 3.35 (s, 2 H, CH₂I), 4.4 (t, 1 H, CH–O). Trans isomer: $t_{\rm R} = 12.48$; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.1–1.9 (m, 6 H, CH₂), 1.55 (s, 3 H, CH₃), 3.4 (s, 2 H, CH₂I), 4.45 (t, 1 H, CH–O); MS *m/e* 298 (M⁺), 170, 158, 142, 128, 110, 70.

Anal. Calcd for $C_9H_{15}O_3I$: C, 36.24; H, 5.07. Found: C, 36.16; H, 4.99.

3-(Iodomethyl)-3-methyl-2,5-dioxacyclopentanone (4): white crystals; mp 71 °C; IR (Nujol) 1805 ($\nu_{C=0}$) cm⁻¹; ¹H NMR (CDCl₃) δ 1.75 (s, 3 H, CH₃), 3.45 (s, 2 H, CH₂I), 4.35 (AB q, 2 H, CH₂O); MS, m/e 242 (M⁺), 142, 127, 100, 86.

Anal. Calcd for $C_5H_7O_3I$: C, 24.8; H, 2.91. Found: C, 24.1; H, 2.87.

4-Iodo-1,3-dioxahexahydroindan-2-one (5): white crystals; mp 69 °C; IR (Nujol) 1800 ($\nu_{C=0}$) cm⁻¹. VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a 7a,3a-cis, 3a,4-trans/ 7a,3a-trans, 3a,4-trans ratio of 99:1. 7a,3a-Cis, 3a,4-trans isomer: $t_{\rm R}$ = 9.46; ¹H NMR (CDCl₃) δ 1.2-3.25 (m, 6 H, *CH*₂), 4-4.35 (m, 1 H, CHI), 4.6-5.0 (m, 2 H, CH-O). 7a,4a-Trans, 4a,4 trans isomer: $t_{\rm R}$ = 9.28; MS, m/e 268 (M⁺), 141, 127, 97.

Anal. Calcd for $C_7H_9O_3I$: C, 31.35; H, 3.38. Found: C, 31.26; H, 3.31.

3-(Iodomethyl)-4-methyl-4-(4-methyl-3-penten-1-yl)-2,5-dioxacyclopentanone (6): colorless oil; IR (film) 1800 ($\nu_{C=0}$) cm⁻¹. VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a cis/trans diastereomer ratio of 80:20. Cis isomer: $t_{\rm R} = 10.45$; ¹H NMR (CDCl₃) δ 1.43 (s, 3 H, CH₃), 1.6, 1.68 (2 s, 6 H, CH₃), 1.5-2.4 (m, 4 H, CH₂), 3.30 (AB q, 2 H, CH₂I, $J_{\rm AB} = 8$ Hz), 4.71 (t, 1 H, CH–O, J = 8 Hz), 5.20 (t, 1 H, CH–C, J = 6 Hz). Trans isomer: $t_{\rm R} = 10.29$; ¹H NMR (CDCl₃) δ 1.40 (s, 3 H, CH₃), 1.6, 1.68 (2 s, 6 H, CH₃), 1.5-2.4 (m, 4 H, CH₂), 3.30 (AB q, 2 H, CH₂I, $J_{\rm AB} = 8$ Hz), 4.71 (t, 1 H, CH–O, J = 8 Hz), 5.20 (t, 1 H, CH–3, J = 6 Hz). Trans isomer: $t_{\rm R} = 10.29$; ¹H NMR (CDCl₃) δ 1.40 (s, 3 H, CH₃), 1.6, 1.68 (2 s, 6 H, CH₃), 1.5-2.4 (m, 4 H, CH₂), 3.30 (AB q, 2 H, CH₂I, $J_{\rm AB} = 8$ Hz), 4.75 (t, 1 H, CH–O, J = 8 Hz), 5.20 (t, 1 H, CH–C, J = 6 Hz); MS, m/e 324 (M⁺), 196, 184, 154, 136, 128, 110, 94.

Anal. Calcd for $C_{11}H_{17}O_3I$: C, 40.74; H, 5.28. Found: C, 40.67; H, 5.21.

3-(Iodomethyl)-3-methyl-2,6-dioxacyclohexanone (7): white crystals; mp 79 °C; IR (Nujol) 1750 ($\nu_{C=0}$) cm⁻¹; ¹H NMR (CDCl₃) δ 1.65 (s, 3 H, CH₃), 2.1–2.5 (m, 2 H, CH₂), 3.45 (s, 2 H, CH₂I), 4.45 (t, 2 H, CH₂–O, J = 6 Hz); MS, m/e 256 (M⁺), 169, 129, 127, 115.

Anal. Calcd for $C_6H_9O_3I$: C, 28.13; H, 3.54. Found: C, 28.07; H, 3.47.

3-(1-Iodoprop-1-yl)-2,6-dioxacyclohexanone (8): colorless oil; IR (film) 1750 (ν_{C-0}) cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.2–1.5 (m, 2 H, CH₂), 2.1–2.5 (m, 2 H, CH₂), 4.1–4.6 (complex m, 4 H, CH₂–O, CH–O, CHI); MS, m/e 270 (M⁺), 141, 127.

Anal. Calcd for $C_7H_{11}O_3I$: C, 31.11; H, 4.10. Found: C, 31.04; H, 4.05.

3-(Iodomethyl)-5-methyl-2,6-dioxacyclohexanone (9): colorless oil; IR (film) 1750 ($\nu_{C=0}$) cm⁻¹. VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a cis/trans ratio of 95:5. Cis isomer: $t_{\rm R} = 10.21$; ¹H NMR (CDCl₃) δ 1.45 (d, 3 H, CH₃, J = 6 Hz), 1.7 (dt, 1 H, H_A, J_{AB} = 12.5 Hz, J_{AX} = 11.5 Hz), 2.4 (dt, 1 H, H_B, J_{AB} = 12.5 Hz, J_{BX} = 3 Hz), 3.45 (d, 2 H, CH₂I, J = 5 Hz), 4.2–4.5 (complex m, 2 H, CH–O). Trans isomer: $t_{\rm R} = 9.75$; MS, m/e 256 (M⁺), 128, 127, 87.

Anal. Calcd for $C_6H_9O_3I$: C, 28.13; H, 3.54. Found: C, 28.04; H, 3.47.

3-(Iodomethyl)-3,5-dimethyl-2,6-dioxacyclohexanone (10): IR (Nujol) 1750 (ν_{C-O}) cm⁻¹; VPC (100 °C for 5 min and then to 240 °C at 10 °C/min) gave a cis/trans ratio of 94:6. Cis isomer: $t_{\rm R}$ = 11.58; white crystals; mp 109 °C; ¹H NMR (CDCl₃) δ 1.43 (d, 3 H, CH₃, J = 6 Hz), 1.64 (s, 3 H, CH₃), 1.8–2.4 (m, 2 H, CH₂), 3.40 (s, 2 H, CH₂I), 4.3–4.9 (m, 1 H, CH–O). Trans isomer: $t_{\rm R}$ = 10.86; colorless oil; ¹H NMR (CDCl₃) δ 1.42 (d, 3 H, CH₃, J = 6 Hz), 1.60 (s, 3 H, CH₃), 1.8–2.9 (m, 2 H, CH₂), 3.44 (s, 2 H, CH₂I), 4.2–4.9 (m, 1 H, CH–O); MS, m/e 270 (M⁺), 184, 141, 127, 85.

Anal. Calcd for $C_7H_{11}O_3I$: C, 31.11; H, 4.10. Found: C, 31.02; H, 4.05.

General Procedure for Preparation of Alkenyl Methyl Carbonates 31 and 32. The allylic or homoallylic alcohol (30 mmol) was dissolved in dry ether (30 mL) containing Et_3N (3.4 g, 33 mmol), and CH₃OCOCl (2.8 g, 30 mmol) in dry ether (10 mL) was added at 0 °C under stirring. After 1 h the mixture was diluted with water and extracted with ether. The organic layer was washed (3 N HCl, 10% aqueous NaHCO₃ solution, water), dried (Na₂SO₄), and evaporated in vacuo. After removal of the solvent, the residue was purified by silica gel chromatography; and after elution with hexane/ether (90:10), alkenyl methyl carbonates 31 and 32 were obtained in 95% yield.

(1-Hexen-3-yl) methyl carbonate (31): colorles oil; IR (film) 1750 ($\nu_{C=0}$) cm⁻¹; ¹H NMR (CCl₄) δ 0.95 (t, 3 H, CH₃), 1.1–1.9 (m, 4 H, CH₂), 3.8 (s, 3 H, OCH₃), 4.8–6.1 (complex pattern, 4 H, CH=CH₂, CH–O); MS, m/e 158 (M⁺), 115, 99, 59.

Anal. Calcd for $C_8H_{14}O_3$: C, 60.74; H, 8.92. found: C, 60.68; H, 8.86.

(2-Methyl-1-hepten-3-yl) methyl carbonate (32): colorless oil; IR (film) 1750 ($\nu_{\rm C-O}$) cm⁻¹; ¹H NMR (CCl₄) δ 0.95 (t, 3 H, CH₃), 1.1–1.8 (m, 6 H, CH₂), 1.7 (s, 3 H, CH₃), 3.78 (s, 3 H, OCH₃), 4.85 (m, 1 H, CH–O), 4.9 (s, 2 H, CH₂==C); MS, m/e 186 (M⁺), 130, 111, 56.

Anal. Calcd for $C_{10}H_{18}O_3$: C, 64.49; H, 9.74. Found: C, 64.41; H, 9.68.

General Procedure for Preparation of Iodo Carbonates from Alkenyl Methyl Carbonates. To a solution of alkenyl methyl carbonate (10 mmol) in THF (20 mL) was added iodine (5 g, 20 mmol) dissolved in THF (50 mL), and the mixture was stirred for 5 h. Then ethyl acetate (50 mL) was added, and the organic phase was washed with $Na_2S_2O_3$ solution until the iodine color disappeared. After extraction and drying (Na_2SO_4), the solvent was evaporated in vacuo and the residue purified by silica gel chromatography; after elution with hexane/ethyl acetate (80:20), iodo carbonates were obtained. Yields are reported in Table I.

Preparation of Amberlyst A 26 in the OH⁻ Form. A 1 N NaOH solution (100 mL) was added under argon at room temperature to 10 g of Amberlyst A 26 (Rohm and Haas) in the chloride form (average capacity ~ 3.7 mequiv/g) and the suspension stirred for 1 h. The NaOH solution was then discarded, and the resin was washed with water (100 mL) and then with methanol (200 mL) while stirring. The reagent can be used directly but must be prepared under an inert atmosphere, since it is CO₂ sensitive, and stored at 0 °C to avoid decomposition.

Hydrolysis of Iodo Carbonates. Synthesis of Epoxy Alcohols 11-20. A solution of the iodo carbonate (10 mmol) in methanol (20 mL) was added under argon at room temperature to a stirred suspension of the resin Amberlyst A 26 in the OHform (6 g, \sim 22 mequiv) and stirring continued for 2 h. The resin was then filtered off and washed with methanol (40 mL). The organic solution was evaporated in vacuo, and the epoxy alcohols 11-20 were obtained practically pure. The results are summarized in Table I.

1,2-Epoxy-3-hexanol (11): colorless oil; VPC (60 °C) gave an erythro/threo diastereomeric ratio of 40:60. Erythro isomer: $t_{\rm R}$ = 2.60; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.2–1.8 (m, 4 H, CH₂), 2.55–3 (m, 3 H, CH₂–CHO), 2.9 (br s, 1 H, OH), 3.4–3.9 (m,

1 H, CHOH). Three isomer: $t_{\rm R} = 2.65$; ¹H NMR (CDCl₃) δ 0.95 (t, 3 H, CH₃), 1.2–1.9 (m, 4 H, CH₂), 2.5–3.2 (m, 3 H, CH₂–CHO), 2.9 (br s, 1 H, OH), 3.5–4 (m, 1 H, CHOH); MS, m/e 116 (M⁺), 98, 74, 56.

Anal. Calcd for $C_6H_{12}O_2$: C, 62.04; H, 10.41. Found: C, 61.97; H, 10.36.

2,3-Epoxy-4-octanol (12): colorless oil; VPC (60 °C for 5 min and then to 240 °C at 10 °C/min) gave an erythro/three diastereomeric ratio of 7:93. Erythro isomer, $t_{\rm R} = 6.39$. Three isomer: $t_{\rm R} = 6.57$; ¹H NMR (CDCl₃) δ 0.9 (t, 3 H, CH₃), 1.15–1.7 (m, 6

H, CH₂), 1.35 (d, 3 H, CH₃), 2.55–3.2 (m, 2 H, CH–CHO), 3.2–3.6 (m, 1 H, CHOH), 3.35 (br s, 1 H, OH); MS, m/e 87 (M⁺ – C₄H₉), 82, 71, 69, 58, 57.

Anal. Calcd for $C_8H_{16}O_2$: C, 66.63; H, 11.18. Found: C, 66.56; H, 11.12.

1,2-Epoxy-2-methyl-3-heptanol (13): colorless oil; VPC (70 °C) gave an erythro/three diastereomeric ratio of 60:40. Erythro isomer: $t_{\rm R} = 5.15$; ¹H NMR (CDCl₃) δ 0.9 (t, 3 H, CH₃), 1.1–1.8

(m, 6 H, CH₂), 1.3 (s, 3 H, CH₃), 2.7 (dd, 2 H, $C-CH_2O$), 3.4–3.7 (m, 1 H, CHOH), 3.6 (br s, 1 H, OH). Three isomer: $t_R = 6.02$; ¹H NMR (CDCl₃) δ 0.9 (t, 3 H, CH₃), 1.1–1.8 (m, 6 H, CH₂), 1.3

(s, 3 H, CH₃), 2.65 (dd, 2 H, \dot{C} -CH₂ \dot{O}), 3.1-3.45 (m, 1 H, CHOH), 3.6 (br s, 1 H, OH); MS, m/e 87 (M⁺ - C₄H₉), 85, 71, 58.

Anal. Calcd for $C_8H_{16}O_2$: C, 66.63; H, 11.18. Found: C, 66.57; H, 11.13.

2,3-Epoxy-2-methyl-1-propanol (14): colorless oil; ¹H NMR

 $(\text{CDCl}_3) \delta 1.35 \text{ (s, 3 H, CH}_3), 2.75 \text{ (AB q, 2 H, CH}_2-CO, J = 5 Hz), 3.75 \text{ (d, 2 H, CH}_2OH, J = 2 Hz), 6 (br s, 1 H, OH); MS, <math>m/e 88$ (M⁺), 57 (M⁺ – CH}2OH), 42, 31.

Anal. Calcd for $C_4H_8O_2$: C, 54.53; H, 9.15. Found: C, 54.46; H, 9.08.

2,3-Epoxycyclohexan-1-ol (15): colorless oil; VPC (60 °C) gave a cis/trans diastereomeric ratio of 99:1. Cis isomer: $t_{\rm R}$ = 2.10; ¹H NMR (CDCl₃) δ 1.3–2 (m, 6 H, CH₂), 3.35 (br s, 2 H,

CH–CHO), 3.85 (br s, 1 H, OH), 4.05 (m, 1 H, CHOH); ¹³C NMR δ 67.6, 55.8, 55.2, 28.2, 22.9, 19.3. Trans isomer: $t_{\rm R}$ = 2.34; no peaks attributable to trans isomer could be seen in the ¹³C NMR spectrum; MS, m/e 114 (M⁺), 96 (M⁺ – H₂O), 55, 41.

Anal. Calcd for $C_6H_{10}O_2$: C, 63.13;, H, 8.83. Found: C, 63.07; H, 8.77.

1,2-Epoxy-3,7-dimethyl-6-octen-3-ol (16): colorless oil; VPC (70 °C) gave an erythro/threo diastereomeric ratio of 80:20. Erythro isomer: $t_{\rm R} = 7.20$; ¹H NMR (CDCl₃) δ 1.2 (s, 3 H, CH₃), 1.35–1.9 (m, 8 H, CH₂ and CH₃), 1.9–2.4 (m, 2 H, CH₂), 2.25 (br

s, 1 H, OH), 2.15–3.1 (m, 3 H, $\dot{C}H$ – CH_2O), 5.2 (t, 1 H, CH=C, J = 7 Hz). Threo isomer: $t_R = 8.11$; MS, m/e 170 (M⁺), 152 (M⁺ – H₂O), 127, 109, 83, 69, 55, 43.

Anal. Calcd for $C_{10}H_{18}O_2$: C, 70.54; H, 10.66. Found: C, 70.48; H, 10.59.

3,4-Epoxy-3-methyl-1-butanol (17): colorless oil; ¹H NMR (CDCl₃) δ 1.4 (s, 3 H, CH₃), 1.9 (t, 2 H, CH₂, J = 6 Hz), 2.6–2.9

(m, 2 H, $\dot{C}H_2$ –CO), 2.85 (br s, 1 H, OH), 3.8 (t, 2 H, CH_2OH , J = 6 Hz); MS, m/e 102 (M⁺), 87 (M⁺ – CH₃), 84 (M⁺ – H₂O), 71, 57, 55.

Anal. Calcd for $C_5H_{10}O_2$: C, 58.80; H, 9.87. Found: C, 58.72; H, 9.84.

3,4-Epoxy-1-hexanol (18): colorless oil; ¹H NMR (CDCl₃) δ

1.1 (t, 3 H, CH₃), 1.3–2 (m, 4 H, CH₂), 2.75–4 (m, 2 H, CH–CHO), 3.15 (br s, 1 H, OH), 3.85 (t, 2 H, CH₂OH, J = 6 Hz); MS, m/e116 (M⁺), 85 (M⁺ – CH₂OH), 59, 57, 41.

Anal. Calcd for $C_6H_{12}O_2$: C, 62.04; H, 10.41. Found: C, 61.98; H, 10.36.

4,5-Epoxy-2-pentanol (19): Colorless oil; VPC (60 °C) gave an erythro/threo diastereomeric ratio of 95:5. Erythro isomer: $t_{\rm R} = 2.42$; ¹H NMR (CDCl₃) δ 1.25 (d, 3 H, CH₃, J = 6 Hz), 1.5–1.9 (m, 2 H, CH₂), 2.6 (br s, 1 H, OH), 2.4–2.95 (m, 2 H, CH₂–CHO), 2.95–3.3 (m, 1 H, CH₂–CHO), 4.1 (m, 1 H, CHOH); ¹³C NMR δ 23.4, 41.5, 46.8, 50.3, 66.0. Minor peaks attributable to the threo isomer ($t_{\rm R} = 2.55$) were seen in the ¹³C NMR spectrum at δ 23.8, 41.6, 47.1, 50.2, and 65.4. From the peak ratio the erythro/threo ratio was confirmed as being 95:5: MS, m/e 102 (M⁺), 87 (M⁺ $-CH_3$), 84 (M⁺ $-H_2$ O), 83, 57, 45.

Anal. Calcd for $C_5H_{10}O_2$: C, 58.80; H, 9.87. Found: C, 58.73; H, 9.83.

4,5-Epoxy-4-methyl-2-pentanol (20): colorless oil; VPC (70 °C) gave an erythro/threo diastereomeric ratio of 94:6. Erythro isomer: $t_{\rm R} = 2.70$; ¹H NMR (CDCl₃) δ 1.2 (d, 3 H, CH₃, J = 6 Hz), 1.4 (s, 3 H, CH₃), 1.5–2.4 (m, 2 H, CH₂), 2.7 (d, 2 H, CH₂–CO), 3.7 (br s, 1 H, OH), 3.6–4.4 (m, 1 H, CHOH). Threo isomer: $t_{\rm R} = 2.92$; MS, m/e 116 (M⁺), 59, 57, 40.

Anal. Calcd for $C_6H_{12}O_2$: C, 62.04; H, 10.41. Found: C, 61.96; H, 10.37.

Preparation of Amberlyst A 26 in CO_3^{2-} Form. A 1 M solution of sodium carbonate (900 mL) was slowly percolated through a column filled with Amberlyst A 26 (15 g; Rohm and Haas) in the chloride form (average capacity ~ 3.7 mequiv/g) until a negative test for chloride ion in the eluent was obtained. The resin was then washed with methanol and ether and dried in vacuo for 2 h at room temperature. This reagent was stored for 1 month at room temperature without loss of reactivity.

Hydrolysis of Epoxy Alcohols. Synthesis of Triols 21-30. Amberlyst A 26 in the carbonate form (8 g, \sim 30 mequiv) was added to a stirred solution of the epoxy alcohol (10 mmol) in benzene (20 mL) and the suspension refluxed for 6 h. The resin was then filtered off and the benzene solution discarded. After successive washing of the resin with methanol (50 mL) and evaporation in vacuo of the solvent, the pure triols were obtained. The results are summarized in Table II.

1,2,3-Hexanetriol (21): colorless oil; VPC (65 °C) gave an erythro/threo diastereomeric ratio of 40:60. Erythro isomer, $t_{\rm R}$ = 2.96. Threo isomer: $t_{\rm R}$ = 2.86; ¹H NMR (D₂O) δ 1 (t, 3 H, CH₃), 1.2–1.8 (m, 4 H, CH₂), 3.75 (m, 4 H, CHOH, CH₂OH); MS, m/e 103 (M⁺ – CH₂OH), 91, 85, 73, 61, 43, 31, 30.

Anal. Calcd for $C_6H_{14}O_3$: C, 53.71; H, 10.52. Found: C, 53.65; H, 10.47.

2,3,4-Octanetriol (22): colorless oil; VPC (65 °C for 5 min and then to 240 °C at 10 °C/min) gave a diastereomeric mixture of unassigned configuration in a 60:20:20 ratio ($t_{\rm R} = 6.35, 5.80$, and 5.26, respectively); ¹H NMR (CD₃COCD₃) δ 0.9 (t, 3 H, CH₃), 1.1–1.8 (m, 6 H, CH₂), 1.25 (t, 3 H, CH₃), 3–4.2 (m, 3 H, CHOH), 3.85 (br s, 3 H, OH); MS, m/e 117 (M⁺ – CH₃CHOH), 100, 81, 69.

Anal. Calcd for $C_8H_{18}O_3$: C, 59.23; H, 11.18. Found: C, 59.16; H, 11.14.

2-Methyl-1,2,3-heptanetriol (23): colorless oil; VPC (90 °C) gave an erythro/threo diastereomeric ratio of 60:40. Erythro isomer: $t_{\rm R} = 9.00$; ¹H NMR (CD₃COCD₃) δ 0.9 (t, 3 H, CH₃), 1.15–1.7 (m, 6 H, CH₂), 3.3–3.9 (m, 3 H, CH₂OH, CHOH), 3.85 (br s, 3 H, OH). Threo isomer: $t_{\rm R} = 9.32$; ¹H NMR (CD₃COCD₃) δ 0.9 (t, 3 H, CH₃), 1.1 (s, 3 H, CH₃), 1.15–1.7 (m, 6 H, CH₂), 3.5 (m, 3 H, CH₂OH, CHOH), 3.85 (br s, 3 H, OH); MS, m/e 131 (M⁺ – CH₂OH), 113, 105, 87, 75.

Anal. Calcd for $C_8H_{18}O_3$: C, 59.23; H, 11.18. Found: C, 59.17; H, 11.13.

2-Methyl-1,2,3-propanetriol (24): colorless oil; ¹H NMR (D₂O) δ 1.15 (s, 3 H, CH₃), 3.45 (s, 4 H, CH₂OH); MS, m/e 91 (M⁺ – CH₃), 75 (M⁺ – CH₂OH), 57, 32, 31, 30.

Anal. Calcd for $C_4H_{10}O_3$: C, 45.27; H, 9.50. Found: C, 45.20; H, 9.46.

1,2,3-Cyclohexanetriol (25): white crystals; VPC (90 °C) gave a mixture of DL (1,2/3) and meso (1,3/2) (99:1) compounds. DL (1,2/3) isomer: $t_{\rm R}$ = 9.81; mp 124 °C (lit.²⁰ mp 125 °C); ¹H NMR (D₂O) δ 1.35–2.1 (m, 6 H, CH₂), 3.43 (dd, 1 H, CHOH), 3.7 (m, 1 H, CHOH), 4.03 (m, 1 H, CHOH). Meso (1,3/2) isomer: $t_{\rm R}$ = 9.94; MS, m/e 114 (M⁺ – H₂O), 96 (M⁺ – 2 H₂O), 86, 83, 70, 58, 57, 43.

Anal. Calcd for $C_6H_{12}O_3$: C, 54.53; H, 9.15. Found: C, 54.47; H, 9.11.

3,7-Dimethyl-6-octene-1,2,3-triol (26). VPC (120 °C) gave an erythro/threo diastereomeric ratio of 80:20. Erythro isomer: $t_{\rm R} = 10.02$; white crystals; mp 44 °C; ¹H NMR (CD₃COCD₃) δ 1.15 (s, 3 H, CH₃), 1.3–1.8 (m, 8 H, CH₂ and CH₃), 1.8–2.4 (m, 2 H, CH₂), 3.3–4 (m, 3 H, CHOH, CH₂OH), 4.8 (br s, 3 H, OH), 5.25 (t, 1 H, C=CH, J = 6 Hz). Threo isomer: $t_{\rm R} = 10.20$; MS, m/e 170 (M⁺ - H₂O), 152 (M⁺ - 2 H₂O), 127, 109, 83, 69, 55, 43.

Anal. Calcd for C₁₀H₂₀O₃: C, 63.79; H, 10.71. Found: C, 63.72; H, 10.68

2-Methyl-1,2,4-butanetriol (27): colorless oil; ¹H NMR $(CD_3COCD_3) \delta 1.15 (s, 3 H, CH_3), 1.73 (t, 2 H, CH_2, J = 6 Hz),$ 3.4 (s, 2 H, CH₂OH), 3.75 (t, 2 H, CH₂OH, J = 6 Hz), 3.95 (br s, 3 H, OH); MS, m/e 89 (M⁺ – CH₂OH), 87, 75, 71, 69, 57, 31. Anal. Calcd for C₅H₁₂O₃: C, 49.98; H, 10.07. Found: C, 49.93; H. 10.04.

1,3,4-Hexanetriol (28): colorless oil; ¹H NMR (CD₃COCD₃) δ 1 (t, 3 H, CH₃, J = 6 Hz), 1.25–1.85 (m, 4 H, CH₂), 3.1–3.9 (m, 2 H, CHOH), 3.7 (t, 2 H, CH_2OH , J = 6 Hz), 4.55 (br s, 3 H, OH); MS, $m/e 103 (M^+ - CH_2OH)$, 71, 43, 31, 30.

Anal. Calcd for C₆H₁₄Õ₃: C, 53.71; H, 10.52. Found: C, 53.68; H. 10.49.

1,2,4-Pentanetriol (29): colorless oil; VPC (70 °C) gave an erythro/threo diastereomeric ratio of 95:5. Erythro isomer: $t_{\rm R}$ = 2.40; ¹H NMR (D₂O) δ 1.2 (d, 3 H, CH₃), 1.65 (t, 2 H, CH₂), 3.4-4.3 (complex pattern, 4 H, CH₂OH, CHOH). Threo isomer: $t_{\rm R} = 2.51$; MS, m/e 89 (M⁺ – CH₂OH), 87, 71, 69, 31, 30.

Anal. Calcd for C₅H₁₂O₃: C, 49.98; H, 10.07. Found: C, 49.93; H, 10.04.

2-Methylpentane-1,2,4-triol (30): colorless oil; VPC (90 °C) gave an erythro/threo diastereomeric ratio of 94:6. Erythro isomer: $t_{\rm R} = 4.27$; ¹H NMR (CD₃COCD₃) δ 1.15 (d, 3 H, CH₃, J = 6 Hz), 1.2 (s, 3 H, CH₃), 1.4-1.6 (m, 2 H, CH₂), 2.2 (br s, 3 H, OH), 3.4 (d, 2 H, CH₂OH), 3.8–4.4 (m, 1 H, CHOH). Three isomer: $t_{\rm R}$ = 4.41; MS, m/e 103 (M⁺ – CH₂OH), 85, 75, 59, 57.

Anal. Calcd for C₆H₁₄O₃: C, 53.71; H, 10.52. Found: C, 53.67; H. 10.48.

Acknowledgment. We are grateful to the National Research Council (Centro di Studio per la Fisica delle Macromolecole) for financial support.

Registry No. cis-1, 83134-75-2; trans-1, 83134-76-3; 2, 83134-77-4; cis-3, 83134-78-5; trans-3, 83134-79-6; 4, 78947-98-5; 5 (isomer 1), 83134-80-9; 5 (isomer 2), 83134-81-0; cis-6, 83134-82-1; trans-6, 83134-83-2; 7, 78947-95-2; 8, 78947-94-1; cis-9, 82770-18-1; trans-9, 82770-17-0; cis-10, 83134-84-3; trans-10, 83134-85-4; erythro-11, 83134-86-5; threo-11, 83134-87-6; 12, 4798-68-9; erythro-13, 53837-93-7; threo-13, 53837-92-6; 14, 872-30-0; cis-15, 26828-72-8; trans-15, 26828-73-9; erythro-16, 29428-56-6; threo-16, 29428-57-7; 17, 59954-67-5; 18, 67663-02-9; erythro-19, 83134-88-7; threo-19, 83134-89-8; erythro-20, 83134-90-1; threo-20, 83134-91-2; erythro-21, 83134-92-3; threo-21, 64446-63-5; 22, 36283-98-4; erythro-23, 83134-93-4; threo-23, 83134-94-5; 24, 25245-58-3; dl-25, 13302-87-9; meso-25, 2630-65-1; erythro-26, 83134-95-6; threo-26, 83134-96-7; 27, 62875-07-4; 28, 83134-97-8; erythro-29, 83212-31-1; threo-29, 83212-32-2; erythro-30, 83134-98-9; threo-30, 83134-99-0; 31, 83135-00-6; 32, 83135-01-7; 1hexen-3-ol, 4798-03-2; (E)-2-octen-4-ol, 20125-81-9; 2-methyl-1-hepten-3-ol, 13019-19-7; 2-methyl-2-propen-1-ol, 513-42-8; 2-cyclohexen-1-ol, 822-67-3; linalool, 78-70-6; 3-methyl-3-buten-1-ol, 763-32-6; (Z)-3-hexen-1-ol, 928-96-1; 4-penten-2-ol, 625-31-0; 4-methyl-4-penten-2-ol, 2004-67-3.

Synthetic Studies of the Thieno[3,2-d]pyrimidine C-Nucleoside Isostere of Inosine¹

Wu-Yun Ren, Mu-Ill Lim, Brian A. Otter, and Robert S. Klein*

Laboratory of Organic Chemistry, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Received May 3, 1982

Synthesis of the thieno [3,2-d] pyrimidine C-nucleoside isostere of inosine 1 β was achieved via a two-step ring closure of C-4 ribosylated methyl 3-aminothiophene-2-carboxylate 11β or, more efficiently, by reaction of 3aminothiophene-2-carboxamide 14 β with triethyl orthoformate. Intermediates 11 β and 14 β were obtained from common synthetic precursor 3 by reaction with methyl 2-mercaptoacetate or 2-mercaptoacetamide, respectively, and cyclization in base. The corresponding derivatives in the α series were made by identical procedures to confirm all structural assignments.

As part of an ongoing program concerned with the synthesis and biological evaluaton of C-nucleoside analogues of the natural purine nucleosides, we reported recently the synthesis of several pyrrolo[3,2-d]pyrimidine (9-deazapurine) C-nucleosides.^{2,3} We report here the synthesis of 7- β -D-ribofuranosylthieno[3,2-d]pyrimidin-4-(3H)-one (1β) , the first member of a structurally related, new class of C-nucleosides and an isostere of inosine and of formycin B.⁴

(1) This investigation was supported by funds from the National Cancer Institute, DHHS (Grants CA-08748, -18856, and -24634) and from the American Cancer Society (Grant CH-169).

The synthesis of a thieno [3,2-d] pyrimidine system was first reported by Gompper et al.⁵ A more systematic investigation of this class of heterocycles by several investigators⁶⁻⁸ was made possible by the development of a practical and versatile approach to their most common synthetic precursors, the 3-amino-2-carbalkoxythiophenes **2** by reaction of α,β -dichloropropionitriles with 2mercaptoacetate esters in base.⁹ Continued interest in these thienopyrimidines has been generated mainly by the wide spectrum of pharmacological activity discovered for

⁽²⁾ Lim, M.-I.; Klein, R. S.; Fox, J. J. Tetrahedron Lett. 1980, 21, 1013.
(3) Lim, M.-I.; Klein, R. S. Tetrahedron Lett. 1981, 22, 25.

⁽⁴⁾ Presented in part at the 180th National Meeting of the American Chemical Society, Aug. 1980, San Francisco, CA, Aug 24-29, 1980, American Chemical Society, Washington, DC, 1980, Abstr MEDI 87.
 (5) Gompper, R.; Kutter, E.; Töpfl, W. Liebigs Ann. Chem. 1962, 659,

^{90.}

^{(6) (}a) Robba, M.; Lecomte, J. M.; Cuguon de Sevricourt, M. Bull. Soc. Chim. Fr. 1970, 3630. (b) Tetrahedron 1971, 27, 487. (c) C. R. Hebd. Seances Acad. Sci., Ser. C 1968, 267, 697.

 ^{(7) (}a) Ried, W.; Giesse, R. Angew. Chem., Int. Ed. Engl. 1968, 7, 136.
 (b) Liebigs Ann. Chem. 1968, 713, 143. (c) Ried, W.; Kahr, E. Ibid. 1968, 716, 219.

⁽⁸⁾ Gronowitz, S.; Fortea-Laguna, J.; Ross, S.; Sjoberget, B.; Stjernstrom, N. E. Acta. Pharm. Succ. 1968, 5, 563.

⁽⁹⁾ Fiesselmann, H. Angew. Chem. 1959, 71, 377. German Patent 1055007; Chem. Abstr. 1961, 55, P6497c. British Patent 837086, Farbwerke Hoechst Akt.-Ges. vorm. Meister Lucius and Brüning; Chem. Abstr. 1960, 54, P24798e.